

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

K-No.: 30733

Customer: Standard type Page 1 of 7

Description

• Fluxgate current sensor with toroidal core

PCB mounting

Characteristics

- Excellent accuracy
- Switching open-collector outputs
- Compact design

Applications

Mainly used for stationary applications:

- Personnel Protection Systems for EV acc. to UL2231

Electrical data	<u> Electrical data – Ratings</u>		typ.	max.	Unit
I P	Primary nominal RMS current (1phase / 3phase)		32	40	Α
$I_{\Delta N1}$	Rated residual fault current 1		6		mA DC
$I_{\Delta N2}$	Rated residual fault current 2		20		mA rms
I _{ΔN1, tolerance}	Trip tolerance 1 (PIN X6-OUT)	4	5	6	mA DC
I _{ΔN2, tolerance}	Trip tolerance 2 (PIN X20-OUT)	15		20(1) / 70(2)	mA rms
S _{PWM-OUT}	Scaling factor of the DC component I _{ΔN1} (for monitoring purpose only!)		3.33		%/mA
I _{ΔRI,1/2} (Fig.1)	Recovery current level for $I_{\Delta N1}/I_{\Delta N2}$ (absolute value DC/rms)		2.5 / 10		mA

(1) f = rated frequency (2) f = 2kHz

Patents: EP2571128 / US9397494 / CN103001175 // EP2813856

$I_{\Delta N, max}$	Measuring range (peak)	-300	+300	mA
Χ	Resolution (@ $I_{\Delta N}$, $\Theta_A = 25^{\circ}C$)	< 0.2	<u>)</u>	mA
t _r	Response times		rding to IEC62955:20 ording to UL2231-2 E	
f _{BW} (Fig.4)	Frequency range	DC	2	kHz
General data				
9 _A	Ambient operation temperature	-40	85	°C
9 _{Storage}	Ambient storage temperature ⁽⁴⁾	-40	85	°C
m	Mass	32		g
Vcc	Supply voltage	4.8 5	5.2	V
Icc	Supply current	33		mA rms
S _{clear} , pp	Clearance (primary to primary)(5)		4.22mm	
S _{creep, pp}	Creepage (primary to primary) ⁽⁵⁾		5.65mm	
S _{clear, ps}	Clearance (primary to secondary)(6)		6.53mm	
Screep, ps	Creepage (primary to secondary) ⁽⁶⁾		7.75mm	
FIT	EN/IEC 61709 / SN 29500 ⁽⁷⁾	<2	2200	fit

 $^{^{(3)}}$ Switching time of a standard relay (t = 20ms) is considered.

General description of sensor function:

The Sensor is sensitive to AC and DC current and can be used for fault current detection in wallbox applications or personnel protection systems for EV. The Sensor detects DC fault current according to IEC62955:2018 and AC fault currents according to UL2231-2 Ed.2 In the event of a DC fault current, PIN 3 will change its state from a low level (GND) to high impedance state. In the event of an AC fault current, PIN 4 will change state from a low level (GND) to a high impedance state, see tab 1. Error conditions (e.g. an internal error) are signaled on PIN 1 (ERROR-OUT).

The sensor only fulfills the switch-off characteristic of the IEC62955 standard (monitoring the residual current). An additional drivercircuit must be used for driving RCBO, RCCB or circuit breaker as defined in IEC62955. The sensor's outputs are limited to max. 40V/50mA!

Datum	Name	Index	Änderung				
11.12.2023	MB	82	Update of firmware	e. CN23-057			
Editor.:	: MC-PD-	CS [Designer: MB		MC-PM: BZ		Released by: SB

⁽⁴⁾see VAC M-sheet 3101; storage temperature inside cardboard packaging.

⁽⁵⁾Can only be achieved with the isolator; all values acc. to applied standards.

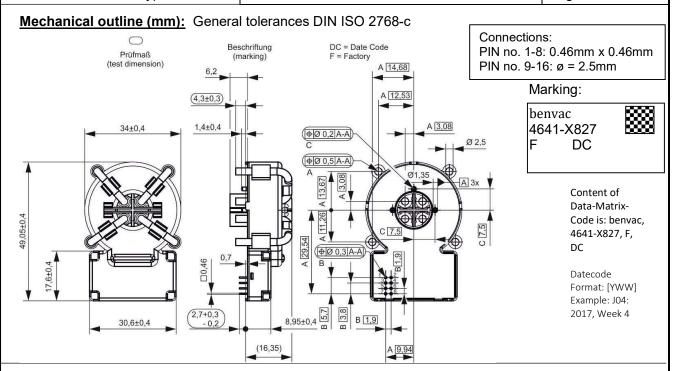
⁽⁶⁾ Designed, manufactured and tested in accordance with IEC60664-1:2020. The isolation coordination is according to: Reinforced insulation, Insulation material group 1, Pollution degree 2, altitude ≤ 5500m and overvoltage category III.

^{(&}lt;sup>7)</sup> The results are valid under following conditions: 55°C mean component ambient temperature by continuous operation (8760h per year); Environment condition: ground mobile, no dust or harmful substances, according to IEC61709; Fit equals one failure per 10^9 component hours.

K-No.: 30733

Specification

Item no.: T60404-N4641-X827


Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

Customer: Standard type

Page 2 of 7

PIN description:

PIN no.	Description				
PIN 1 → ERROR-OUT (open collector output)	If no system fault is detected, the output PIN 1 is a low level (GND). If a system fault is detected, PIN 1 is high impedance. In this case, PINs 3 and 4 will be set to a high impedance state (see tab. 1).				
PIN 2 → TEST-IN (refer to Fig. 2)	A function test including an offset measurement (this value is stored in EEPROM for further calculation) is activated if this PIN is connected to GND for a period of 40ms to 1.2s. If the PIN is set to GND less than 40ms or more than 1.2s, no function test will be performed. Attention: During the functional test and offset measurement, no differential current shall flow. To ensure high accuracy of the sensor this test shall be activated at regular intervals (e.g. at startup, before measuring). If a push-pull switch is used, the voltage range must be 0V5V.				
PIN 3 → X6-OUT (open collector output)	If the residual current is below DC 6mA and no system fault occurs the output on PIN 3 is a low level (GND). In any other case output PIN 3 is in a high impedance state (see tab. 1).				
PIN 4 → X20-OUT (open collector output)	If the residual current is below the 20mA rms and no system fault occurs the output on PIN 4 is a low level (GND). In any other case PIN 4 is in a high impedance state (see tab. 1).				
PIN 5 → GND	Ground connection				
PIN 6 → VCC	Positive supply voltage				
PIN 7 → PWM-OUT	Acc. to the DC component of residual current a duty-cycle with f=8kHz is generated. This is for monitoring purposes only and is not safety function! Refer to S _{PWM-OUT} = 3.33%/mA				
PIN 8 → N.C.	Not connected				
PIN 9 – 16	For primary wires connection				
Editor.: MC-PD-CS Designer: MB	MC-PM: BZ Released by: SB				

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

K-No.: 30733

Customer: Standard type

Page 3 of 7

Typical application diagram:

Recommended: C1, C3, C4 with 100nF to ground and C2 with 10nF to ground as optional EMC improvement. (Components have to be placed close to the device pins)

L6 is not longer recommended for new designs, in existing layouts component L6 should be used with the following parameters:

L6: Inductance ≤220 μH; DC Resistance 1 to 5 Ω

Absolute maximum ratings(8):

		Min	Тур.	Max	Unit
VCE	Collector-Emitter voltage (PINs 1, 3 and 4)			40	V
Ic	Collector current (PINs 1, 3 and 4)			50	mΑ
Vcc	Maximum supply voltage (without function)	-0.3		6	V
U _{MAX}	Maximum rated voltage of primary conductors			440	V
VTEST-IN, high	TEST-IN Input Voltage, high level	0		0.6	V
V _{TEST-IN, low}	TEST-IN Input Voltage, low level	2.5		5	V

(8) Stresses above these ratings may cause permanent damage. Exposure to these conditions for extended periods may degrade device reliability. Functional operation of the device at these or any other conditions beyond those specified is not supported.

Editor.: MC-PD-CS	Designer: MB		MC-PM: BZ			Released by: SB
-------------------	--------------	--	-----------	--	--	-----------------

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

K-No.: 30733

Customer: Standard type Page 4 of 7

Final Tests: (Measurements after temperature balance of the samples at room temperature, SC=significant characteristic)						
,	·	Min.	Max.	Unit		
Vcc	Supply voltage	4.9	5.1	V		
lcc	Supply current	16	28	mA		
TEST-IN	TEST-IN voltage	2.8	3.4	V		
X6-OLIT (normal)	X6-OLIT voltage	0	0.6	V		

Vcc	Supply voltage	4.9	5.1	V
lcc	Supply current	16	28	mA
TEST-IN	TEST-IN voltage	2.8	3.4	V
X6-OUT (normal)	X6-OUT voltage	0	0.6	V
X20-OUT (normal)	X20-OUT voltage	0	0.6	V
ERROR-OUT (normal)	ERROR-OUT voltage	0	0.6	V
X6-OUT (activated)	X6-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
X20-OUT (activated)	X20-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
ERROR-OUT (activated)	ERROR-OUT voltage activated @5V, 1kΩ (pull-up)*	4.9	5.1	V
TC1 (SC)	Trip current 1 – X6	4.5	5.4	mA
TC2 (SC)	Trip current 2 – X6	-5.4	-4.5	mA
TC3 (SC)	Trip current 3 – X20@60Hz	14	20	mA
PWM-OUT (frequency)	PWM-OUT frequency	7.8	8.2	kHz
PWM-OUT (duty-cycle)	PWM-OUT duty-cycle @6mA DC	18	22	%
LV1 (SC)	Limit values of break time - X6-OUT@6mA DC	0	700	ms
LV2 (SC)	Limit values of break time – X20-OUT@20mA, 60Hz	0	1000	ms
NTC1	X6-OUT & X30-OUT@50mA,50Hz	0	0,6	V

^{*} the maximum values of collector-emitter voltage and current see "Absolute maximum ratings"

Product Tests: The EMC product standards can only be fulfilled in the complete application system (more EMC test's can be shown if required).

	Acc. to VAC sheet M3238	passed
	Following tests differ from M3238:	
	4.5a: Damp heat, steady state. Duration: 1000h	
ESD	Air- and contact discharge; U=±2000V, R=1500Ω, C=100pF Acc. to Human Body Model JESD22-A114	±2.0 kV

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

K-No.: 30733

Customer: Standard type Page 5 of 7

Requalification Tests: (re	replicated every year, Precondition acc. to M3238)
----------------------------	--

Ûw, prim-sec	M3064	Impulse test (1.2µs/50µs waveform) PIN 1-8 vs. PIN 9-14 5 pulse → polarity +, 5 pulse → polarity -	5.5	kV rms
Ûw, prim-prim	M3064	Impulse test (1.2µs/50µs waveform) PIN 9 vs. PIN 11, PIN 11 vs. PIN 13, PIN 13 vs. PIN 15, PIN 15 vs. PIN 9 Finulse notarity + 5 pulse notarity	4.0	kV rms
U _d	M3014	5 pulse → polarity +, 5 pulse → polarity - Test voltage, 60s PIN 1-8 vs. PIN 9-14	1.5	kV rms
U _{d, prim-prim}	M3014	Test voltage between primary conductors, 5s PIN 9 vs. PIN 11,PIN 11 vs. PIN 13, PIN 13 vs. PIN 15, PIN 15 vs. PIN 9	1.5	kV rms
U _{PDE}	M3024	Partial discharge voltage (extinction) PIN 1-8 vs. GND *acc. to table 24	1.2	kV rms
U _{PD} x 1.875	M3024	Partial discharge voltage (extinction) PIN 1-8 vs. GND *acc. to table 24	1.5	kV rms

^{*} IEC 61800-5-1:2007

Other instructions:

- Temperature of the primary conductor should not exceed 105°C.
- Vcc during Test-IN function test must be in rated range.
- Housing and bobbin material UL-listed, flammability class 94V-0.
- Fall- and rise-time of Vcc: t > 20µs/V
- UL certification is still pending
- Further standards UL 2231 E-file No. 488116, category FFUQ2 / FFUQ8

Figures:

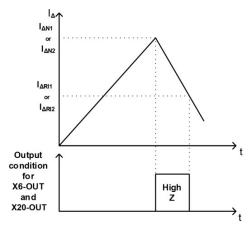


Fig. 1: Meaning of switching recovery level

If the trip-level $I_{\Delta N1}/I_{\Delta N2}$ is accomplished the outputs X6-OUT/X20-OUT will change their state from low-level (GND) to high impedance. Depending on the existence of the residual current I_{Δ} , the outputs X6-OUT/X20-OUT will remain in this state until I_{Δ} falls below the threshold $I_{\Delta R11}/I_{\Delta R12}$.

Editor.: MC-PD-CS	Designer: MB	MC-PM: BZ		Released by: SB

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

Released by: SB

K-No.: 30733

Page 6 of 7

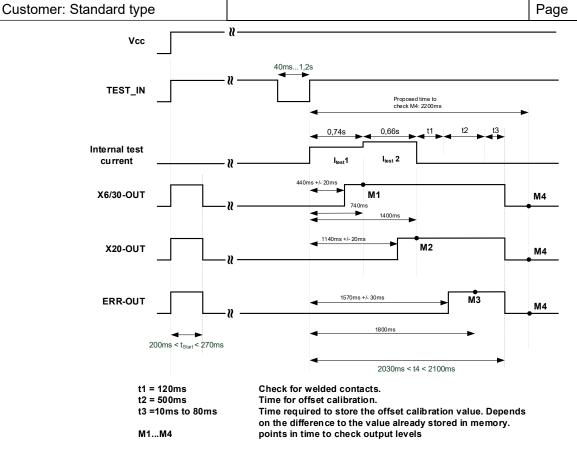
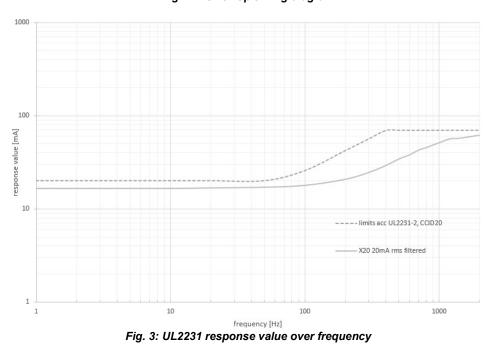



Fig. 2: Power-Up timing diagram

Editor.: MC-PD-CS

Designer: MB

Item no.: T60404-N4641-X827

Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62955:2018 and UL2231-2 Ed.2

Date: 11.12.2023

K-No.: 30733

Customer: Standard type

Page 7 of 7

X6-OUT	X20-OUT	ERROR-OUT	State				
GND	GND	GND	Normal condition				
High impedance	GND	GND	I _∆ ≥ 6mA _{DC}				
GND	High impedance	GND	I _{ΔN2} ≥ 20mA _{rms}				
High impedance	High impedance	GND	$I_{\Delta} \ge 6 \text{mA}_{DC} \text{ AND}$ $I_{\Delta N2} \ge 20 \text{mA}_{rms}$				
High impedance	High impedance	High impedance	Error, system fault				
All other conditions not mentioned in the table are not possible. If these							
conditions occur, the sensor is in unknown state and describes an Error.							

Table 1: Possible output states

	6mA	60mA	200mA
Standard values acc. to IEC62955:2018		0.3s	0.1s
Typical values of sensor	0.45s	0.06s	0.035s

Table 2: Maximum and typical values of break time for residual direct currents