ULTRAVAC 44 V6

COMPOSITION (in wt%)

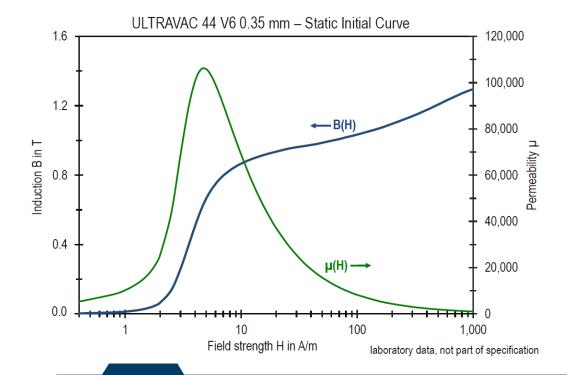
44 Ni - 3 Mo - bal. Fe

PRODUCT DESCRIPTION

ULTRAVAC® 44 V6 is a low loss NiFe alloy that has been designed to exhibit a specifically high electric resistivity with low hysteresis losses. Supplied with an isotropic fine-grained microstructure after final annealing ULTRAVAC 44 V6 is particularly used in highly efficient high frequency motor applications.

TYPICAL APPLICATIONS

laminated stacks for high speed motors, current and positioning sensors.


MAIN PROPERTIES

- Saturation induction J_S = 1.35 T
- · Low specific iron losses
- Electrical resistivity ρ_e = 0.8 $\mu\Omega m$

FORMS OF SUPPLY

- Strip material, thickness 0.025 2 mm, width ≤ 305 mm
- Stamped parts, laminations, and laminated assemblies

Other dimensions and tolerances upon request.

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit				
Mass density ρ	g/cm ³	8.25			
Thermal conductivity (25 °C) λ	W/(m·K)	13 – 15			
Thermal expansion coefficient (20 – 100 °C) α	10 ⁻⁶ /K	7 – 8			
Electrical resistivity ρ _e	μΩm	0.8			
STATIC MAGNETIC PROPERTIES					
Coercivity H _C	A/m	2.5			
Saturation polarization J _S	Т	1.35			
Saturation magnetization B _s at H = 40 kA/m	Т	1.40			
Maximum permeability μ_{max}		100,000			
Magnetostriction constant λ _S	ppm	+ 25			
Curie temperature T _C	°C	340			
SPECIFIC IRON LOSSES OF STRIP MATERIAL AFTER FINAL HEAT TREATMENT		strip thickness 0.10 mm 0.20 mm 0.35 mm			
о _{Fe} 1.0 Т 50 Hz	W/kg	0.21	0.20	0.25	
о _{ге} 1.0 Т 400 Hz	W/kg	2.6	3.8	8.1	
о _{ге} 1.0 Т 1,000 Hz	W/kg	9.3	18	45	
р _{ге} 1.2 Т 50 Hz	W/kg	0.30	0.30	0.39	
р _{Fe} 1.2 Т 400 Hz	W/kg	3.8	5.6	12	
р _{Fe} 1.2 Т 1,000 Hz	W/kg	14	28	69	
MECHANICAL PROPERTIES (finally heat treated)					
Young's modulus E	GPa	140			
Yield strength R _{p0.2}	MPa	160			
Hardness	HV	100			
MECHANICAL PROPERTIES (delivery state)		cold rolled soft annealed			
Yield strength R _{p0.2}	MPa	950	950 250		
Tensile strength R _m	MPa	1,000		500	
		< 2	30		
Elongation A	%	<u> </u>		30	
Elongation A Hardness	% HV	280		30 140	
-					
Hardness RECOMMENDED PARAMETERS FOR THE					
Hardness RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT			hydrogen		
RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT Atmosphere Temperature			hydrogen 1,150		
-	HV				

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, March 2022 © VACUUMSCHMELZE GmbH & Co. KG 2021. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

