PERMENORM 5000 H2 / V5

Strip material

COMPOSITION (in wt%)

47.5 Ni – bal. Fe IEC 60404-8-6 E31 DIN 17405 (1979) RNi8 / RNi12 ASTM 753-21 Alloy 2

PRODUCT DESCRIPTION

The family of PERMENORM[®] 5000 includes the two complementary strip materials PERMENORM 5000 H2 and PERMENORM 5000 V5 providing high saturation magnetization and low magnetic coercivity.

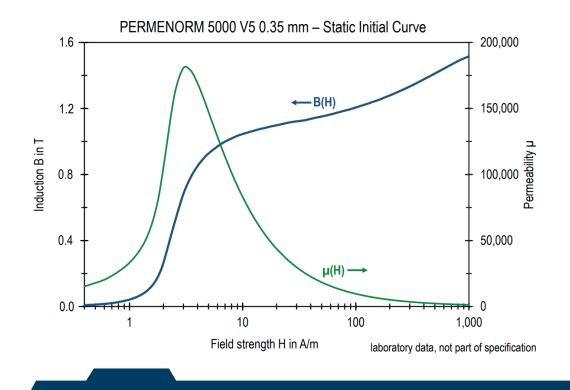
After final annealing PERMENORM 5000 H2 possesses a semiisotropic coarse grain structure with high permeabilities which, among others, finds application in laminated transformer cores for thicknesses below 0.2 mm (transformer grade).

PERMENORM 5000 V5 is an alloy with a more closely controlled purity for improved magnetic properties. Through a tailored fabrication path it exhibits an isotropic fine grain structure after annealing with advantages for use in rotating laminations and other applications with dynamic magnetization changes (rotor grade).

MAIN PROPERTIES

- Saturation induction J_S = 1.55 T
- Coercivity H_c = 3 A/m*
- Max. permeability μ_{max} = 150,000 180,000*
- *typical for thickness 0.35 mm, data for other dimensions upon request

TYPICAL APPLICATIONS


PERMENORM 5000 H2: Toroidal and laminated cores for e.g. current transformers and storage chokes; magnetic shielding.

PERMENORM 5000 V5: RCCB-Relays, laminated stacks for high freq. motors, magnetic shielding, current and positioning sensors.

FORMS OF SUPPLY

- Strip material, thickness 0.025 2 mm, width ≤ 305 mm
- · Stamped parts, laminations, and laminated assemblies

Other dimensions and tolerances upon request. For solid material and wires, see brochure PERMENORM 5000 H2 solid material.

ADVANCED MAGNETIC SOLUTIONS

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit	
Mass density ρ	g/cm ³	8.25
Thermal conductivity (25 °C) λ	W/(m⋅K)	18 – 21
Thermal expansion coefficient (20 – 100 °C) α	10 ⁻⁶ /K	10
Electrical resistivity ρ_e	μΩm	0.45

STATIC MAGNETIC PROPERTIES		5000 V5	5000 H2
Coercivity H _c	A/m	2.5	3
Saturation polarization J _S	Т	1.55	1.55
Saturation magnetization B_s at H = 40 kA/m	Т	1.60	1.60
Maximum permeability µ _{max}		180,000	150,000
Magnetostriction constant λ_s	ppm	+ 25	+ 25
Curie temperature T _C	°C	440	440

SPECIFIC IRON LOSSES OF STRIP MATERIAL AFTER FINAL HEAT TREATMENT		measured on stamped rings of PERMENORM 5000 V5 strip thickness		
		0.10 mm	0.20 mm	0.35 mm
р _{Fe} 1.0 Т 50 Hz	W/kg	0.2	0.2	0.3
р _{Fe} 1.0 Т 400 Hz	W/kg	2.6	4.7	11
р _{Fe} 1.0 Т 1,000 Hz	W/kg	9.7	25	61
р _{Fe} 1.2 Т 50 Hz	W/kg	0.3	0.3	0.4
р _{Fe} 1.2 Т 400 Hz	W/kg	4.0	7.6	18
р _{Fe} 1.2 Т 1,000 Hz	W/kg	15	40	103

MECHANICAL PROPERTIES (finally heat treated)		
Young's modulus E	GPa	140
Yield strength R _{p0.2}	MPa	140
Hardness	HV	105

MECHANICAL PROPERTIES (delivery state)		cold rolled	soft annealed
Yield strength R _{p0.2}	MPa	975	250
Tensile strength R _m	MPa	100	500
Elongation A	%	1	30
Hardness	HV	280	140

RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT		
Atmosphere		hydrogen
Temperature	°C	1,150
Annealing time	h	5
Cooling rate	K/h	100 – 300

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, March 2024 © VACUUMSCHMELZE GmbH & Co. KG 2023. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

ADVANCED MAGNETIC SOLUTIONS